120 research outputs found

    Component-Based Real-Time Operating System for Embedded Applications

    Get PDF
    Acceptance rate: 37%, Rank (CORE): AInternational audienceAs embedded systems must constantly integrate new functionalities, their developement cycles must be based on high-level abstractions, making the software design more flexible. CBSE provides an approach to these new requirements. However, low-level services provided by operating systems are an integral part of embedded applications, furthermore deployed on resource-limited devices. Therefore, the expected benefits of CBSE must not impact on the constraints imposed by the targetted domain, such as memory footprint, energy consumption, and execution time. In this paper, we present the componentization of a legacy industry-established Real-Time Operating System, and how component-based applications are built on top of it. We use the Think framework that allows to produce flexible systems while paying for flexibility only where desired. Performed experimentions show that the induced overhead is negligeable

    CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    Get PDF
    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure

    TET1 is a tumor suppressor of hematopoietic malignancy

    Get PDF
    The methylcytosine dioxygenase TET1 (‘ten-eleven translocation 1’) is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.National Institutes of Health (U.S.) (5RO1HD045022)National Institutes of Health (U.S.) (5R37CA084198

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time

    Ontogenic changes in hematopoietic hierarchy determine pediatric specificity and disease phenotype in fusion oncogene-driven myeloid leukemia

    Get PDF
    Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2–GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2–GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2–GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state

    Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer

    Get PDF
    In this paper, we report the synthesis and self-assembly of a novel thermoresponsive PNIPAM60–b-PDMS70–b-PNIPAM60 triblock copolymer in aqueous solution. The copolymer used a commercially available precursor modified with an atom transfer radical polymerization (ATRP) initiator to produce an ABA triblock copolymer via ATRP. Small-angle neutron scattering (SANS) was used to shed light on the structures of nanoparticles formed in aqueous solutions of this copolymer at two temperatures, 25 and 40 °C. The poly(dimethylsiloxane) block is very hydrophobic and poly(N-isopropylacrylamide) (PNIPAM) is thermoresponsive. SANS data at 25 °C indicates that the solutions of PNIPAM–b-PDMS–b-PNIPAM copolymers form well-defined aggregates with presumably core–shell structures below cloud point temperature. The scattering curves originating from nanoparticles formed at 40 °C in 100% D2O or 100% H2O were successfully fitted with the Beaucage model describing aggregates with hierarchical structure

    Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Get PDF
    Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution

    Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

    Get PDF
    Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles

    Influence of fire prevention management strategies on the diversity of butterfly fauna in the eastern Pyrenees

    Get PDF
    Fire prevention management is becoming a necessity in many Mediterranean locations to regulate fire of natural or human origin. However, very few studies have determined the real effects of the strategies adopted on local fauna. Butterflies are sensitive to local changes and they can thus serve as indicators of environmental changes. Three different types of fire prevention management approaches in three different localities in the Eastern Pyrenees (France) were performed and the butterfly community composition was investigated. We show that of the 80 species of butterflies observed, 36 % can be considered as biological markers. An original objective treatment of data using hierarchical distance analysis combined with a neural network analysis (Self-Organizing Maps) was applied in this study. Our conclusions are that the overall number of species is maintained independently of the fire prevention type but that some important changes are observed among butterfly communities, with a clear reduction of the numbers of endemic/specialized species in favour of generalist ones for the two most drastic fire prevention management approaches studied here. The influence of such approaches is discussed on the basis of the conservation of Mediterranean species of Lepidoptera
    corecore